Mensuration Problems for Bank Exams with Solutions Pdf

1. A rectangular room can be partitioned into two equal square rooms by a partition 7 metres long. What is the area of the rectangular room in square metres?
a. 49
b. 147
c. 196
d. 98

Ans: D
Length of the room $=(7+7) \mathrm{m}=14 \mathrm{~m}$. Breadth of the room $=7 \mathrm{~m}$.
\therefore Area of the room $=(14 \times 7) \mathrm{m}^{2}=98 \mathrm{~m}^{2}$.

b. 50 m
c. 100 m
d. 125 m

Ans: B
Area of given square $=(25 \times 25) \mathrm{m}^{2}=625 \mathrm{~m}^{2}$.
Area of new square $=(625 \times 4) \mathrm{m}^{2}=2500 \mathrm{~m}^{2}$.
\therefore Side of new square $=\sqrt{2500} \mathrm{~m}=50 \mathrm{~m}$.
3. The cost of cultivating a square field at the rate of Rs. 685 per hectare is Rs. 6165. The cost of putting a fence around it at the rate off Rs. 48.75 per metre would be
a. Rs. 23400
b. Rs. 52650
c. Rs. 58500
d. Rs. 117000

Ans: C

Area $=\frac{\text { Total cost }}{\text { Rate }}=\left(\frac{6165}{685}\right)$ hectares $=(9 \times 10000) \mathrm{m}^{2}$.
\therefore Side of the square $=\sqrt{90000} \mathrm{~m}=300 \mathrm{~m}$.
Perimeter of the field $=(300 \times 4) \mathrm{m}=1200 \mathrm{~m}$.
Cost of fencing $=₹(1200 \times 48.75)=₹ 58500$.
4. 50 square stone slabs of equal size were needed to cover a floor area of 72 sq.m. The length of each stone slab is
a. 102 cm
b. 120 cm

Ans: B
Area of each slab $=\left(\frac{72}{50}\right) \mathrm{m}^{2}=1.44 \mathrm{~m}^{2}$.
\therefore Length of each slab $=\sqrt{1.44} \mathrm{~m}=1.2 \mathrm{~m}=120 \mathrm{~cm}$.
5. A circular wire of diameter 42 cm is bent in the form of a rectangle whose sides are in the ratio $6: 5$. Find the area of the rectangle.

We have: $r=21 \mathrm{~cm}$.
Perimeter of the rectangle $=$ Circumference of the circle

$$
=\left(2 \times \frac{22}{7} \times 21\right) \mathrm{cm}=132 \mathrm{~cm} .
$$

Let the sides of the rectangle be $6 x$ and $5 x$.
Then, $2(6 x+5 x)=132 \Rightarrow 11 x=66 \Rightarrow x=6$.
So, the sides of the rectangle are 36 cm and 30 cm .
Area of the rectangle $=(36 \times 30) \mathrm{cm}^{2}=1080 \mathrm{~cm}^{2}$.
6. A rectangular farm has to be fenced on one long side, one short side and the diagonal. If the cost of fencing is Rs. $\mathbf{1 0 0}$ per \mathbf{m}, the area of the farm is $\mathbf{1 2 0 0}$ $\mathrm{m}<$ sup $>2</$ sup> and the short side is 30 m long, how long would the job cost?
a. Rs. 7000
b. Rs. 12000

Ans: B
Length $=\left(\frac{1200}{30}\right) \mathrm{m}=40 \mathrm{~m}$.
Diagonal $=\sqrt{(40)^{2}+(30)^{2}} \mathrm{~m}=50 \mathrm{~m}$.
Length to be fenced $=(40+30+50) \mathrm{m}=120 \mathrm{~m}$.
\therefore Cost of fencing $=₹(120 \times 100)=₹ 12000$.
7. The area of a square is three fifths the area of a rectangle. The length of the rectangle is 25 cm and its breadth is 10 cm less than its length. What is the perimeter of the square?
a. 44 cm
b. $\mathbf{6 0} \mathrm{cm}$
c. 80 cm
d. cannot be determined

Ans: B
Length of rectangle $=25 \mathrm{~cm}$;
Breadth of rectangle $=15 \mathrm{~cm}$.

$$
\begin{aligned}
& \text { Area of rectangle }=(25 \times 15) \mathrm{cm}^{2}=375 \mathrm{~cm}^{2} . \\
& \begin{aligned}
\therefore \text { Area of square } & =\left(\frac{3}{5} \times 375\right) \mathrm{cm}^{2}=225 \mathrm{~cm}^{2} \text { Side of square } \\
& =\sqrt{225} \mathrm{~cm}=15 \mathrm{~cm} .
\end{aligned}
\end{aligned}
$$

Perimeter of square $=(4 \times 15) \mathrm{cm}=60 \mathrm{~cm}$.
8. A man walking at the speed of 4 kmph croses a square field diagonally in 3 minutes. The area of the field is
a. $18000 \mathrm{~m}<$ sup $>2</$ sup $>$

Ans: C
Speed of the man $=\left(4 \times \frac{5}{18}\right) \mathrm{m} / \mathrm{s}=\frac{10}{9} \mathrm{~m} / \mathrm{s}$.
Time taken $=(3 \times 60) \mathrm{sec}=180 \mathrm{sec}$.
Length of diagonal $=($ speed \times time $)=\left(\frac{10}{9} \times 180\right) \mathrm{m}=200 \mathrm{~m}$.
Area of the field $=\frac{1}{2} \times(\text { diagonal })^{2}$

$$
=\left(\frac{1}{2} \times 200 \times 200\right) \mathrm{m}^{2}=20000 \mathrm{~m}^{2} .
$$

9. Total area of 64 small squares of a chessboard is $400 \mathrm{sq.cm}$. There is $\mathbf{3 ~ c m}$ wide border around the chess board. What is the length of the side of the chessboard?
a. 17 cm
b. 20 cm
c. 23 cm
d. 26 cm

Ans: D

Area of each small square $=\left(\frac{400}{64}\right) \mathrm{cm}^{2}=6.25 \mathrm{~cm}^{2}$.
Side of each small square $=\sqrt{6.25} \mathrm{~cm}=2.5 \mathrm{~cm}$.
Since there are 8 squares along each side of the chessboard, we have :
Side $=[(8 \times 2.5)+6] \mathrm{cm}=26 \mathrm{~cm}$.
10. What percentage of the numbers from 1 to 50 have squares that end in the digit 1?
meritnotes.com
c. 10
d. 11
e. 20

Ans: D
The squares of numbers having 1 and 9 as the unit's digit end in the digit 1.
Such numbers are: 1, 9, 11, 19, 21, 29, 31, 39, 41, 49 i.e., there are 10 such numbers.
\therefore Required percentage $=\left(\frac{10}{50} \times 100\right) \%=20 \%$.

