Aptitude Number System Problems with Solutions Pdf

Question: 1
The smallest 4 digit number exactly divisible by 7 is
(A) 1001
(B) 1007
(C) 1101
(D) 1108

Ans: A
The smallest 4 digit number is 1000 .
This when divided by leaves 6 as remainder.
$\therefore 1001$ is the smallest 4 digit number exactly divisible by 7 .

Question: 2
Which is not a prime number?
(A) 13
(B) 19
(C) 17
(D) 21

Ans: D
$21=3 \times 7$ is not a prime number because 21 is a composite number.
Question: 3
$-95 \div 19=$?
(A) -4
(B) -5
(D) 5

Ans: B
$-95 \div 19=$
-95
19
$=-5$.
Question: 4
$(65)^{2}-(55)^{2}=?$
(A) 120
(B) 1200
(C) 1400
(D) 2100

Ans: B
$(65)^{2}-(55)^{2}=(65+55)(65-55)=(120 \times 10)=1200$.
Question: 5
The digit in the unit's place of the number(67) ${ }^{25}-1$ must be
(B) 6
(C) 8
(D) 10

Ans: B
Unit digit of $(67)^{25}=$ Unit digit of 7^{25}.
Unit digit of 7^{4} is 1 and so the unit digit of $\left(7^{4}\right)^{6}$ is 1 .
\therefore Unit digit of $7^{25}=(1 \times 7)=7$.
Question: 6
If m and n are integers, divisible by 5 , which one of the following is not necessary true?
(A) $\mathrm{m}-\mathrm{n}$ is divisible by 5
(B) $m+n$ is divisible by 10
(C) $\mathrm{m}^{2}-\mathrm{n}^{2}$ is divisible by 25
(D) none of these

Ans: B
Take $m=15$ and $n=20$. Then, each one of m and n is divisible by 5 . But $(m+n)$ is not divisible by 10 .

Hence, $(m+n)$ is divisible by 10 is not true.
Question: 7
The largest number that exactly divides each number of the
sequence $1^{5}-1,2^{5}-2,3^{5}-3, \ldots \ldots, n^{5}-n, \ldots$. Is
(A) 1
(B) 15
(C) 30
(D) 120

Ans: C
Required number $=\left(2^{5}-2\right)=(32-2)=30$.
Question: 8
The total numbers of integers between 200 and 400 , each of which either begins with 3 or ends with 3 or both is
(A) 10
(B) 80
(C) 100
(D) 110

Ans: D
Such numbers are $203,213,233,243,253,263,273,283,293$ and all numbers from 300 to 399. Clearly, number of such numbers $=10+100=110$.
9. The smallest number that must be added to 803642 in order to obtain a multiple of 11 is
(A) 1
(B) 4
(C) 5
(D) 7

Ans: D
On dividing 803642 by 11, we get 4 as remainder.
Required number to be added $=(11-4)=7$.

