Probability Questions for SSC, UPSC, IBPS, Railway Exams Pdf

1. A bag contains 4 red balls, 6 blue balls and 8 pink balls. One ball is drawn at random and replace with 3 pink balls. A probability that the first ball drawn was either red or blue in colour and the second ball drawn was pink in colour?
a. $12 / 21$
b. $13 / 17$
c. $11 / 36$
d. $13 / 18$

Ans: C
Number of Red balls $=4$
Number of Blue balls $=6$
Number of Pink balls $=8$
Total number of balls $=4+6+8=18$
Required probability

$$
\begin{aligned}
& =\frac{4}{18} \times \frac{11}{20}+\frac{6}{18} \times \frac{11}{20} \\
& =\frac{11}{20}\left[\left(\frac{4}{18}+\frac{6}{18}\right)\right] \\
& =\frac{11}{20} \times \frac{10}{18}=\frac{11}{36}
\end{aligned}
$$

2. In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that the selected students are 2 boys and 1 girl, is
a. $21 / 46$
b. $25 / 117$
c.1/50
d.3/25

Ans: A

Let S be the sample space and let E be the event of selecting 2 boys and 1 girl.
Then, $n(S) \quad=$ number of ways of selecting 3 students
out of $25={ }^{25} C_{3}=\frac{25 \times 24 \times 23}{3 \times 2 \times 1}=2300$.
And, $n(E)=\left({ }^{15} C_{2} \times{ }^{10} C_{1}\right)=\left(\frac{15 \times 14}{2 \times 1} \times 10\right)=1050$.
$\therefore \quad \mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{1050}{2300}=\frac{21}{46}$.
3. A basket contains 6 blue, 2 red, 4 green and 3 yellow balls. If four balls are picked up at random, what is the probability that 2 are red and 2 are green?
a. $4 / 15$
b. 5/27
c. $1 / 3$
d.2/455

Ans: D

Total number of balls $=(6+2+4+3)=15$.
Let E be the event of drawing 4 balls such that 2 are red and 2 are green.
Then, $n(E)=\left({ }^{2} C_{2} \times{ }^{4} C_{2}\right)=\left(1 \times \frac{4 \times 3}{2 \times 1}\right)=6$.
And, $n(S)={ }^{15} C_{4}=\frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2 \times 1}=1365$.
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{6}{1365}=\frac{2}{455}$.
4. A basket contains 6 blue, 2 red, 4 green and 3 yellow balls. If three balls are picked up at random, what is the probability that none is yellow?
a. $3 / 455$
b. $1 / 5$
c. $4 / 5$
d. 44/91

Ans: D

Total number of balls $=(6+2+4+3)=15$.
Let E be the event of drawing 3 non-yellow balls.
Then, $n(E)={ }^{12} C_{3}=\frac{12 \times 11 \times 10}{3 \times 2 \times 1}=220$.
Also, $n(S)={ }^{15} C_{3}=\frac{15 \times 14 \times 13}{3 \times 2 \times 1}=455$.

$$
\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{220}{455}=\frac{44}{91} .
$$

5. The probability that a card drawn from a pack of 52 cards will be a diamond or a king, is
a. $2 / 13$
b. $4 / 13$
c. 1/13
d. 1/52

Ans: B

Here, $n(S)=52$.
There are 13 cards of diamond (including one king) and there are 3 more kings.
Let $E=$ event of getting a diamond or a king.
Then, $\quad n(E)=(13+3)=16$.
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{16}{52}=\frac{4}{13}$.
6. One card is drawn from a pack of 52 cards. What is the probability that the card drawn is either a red card or a king?
a. $1 / 2$
b.. 6/13
c. $7 / 13$
d. $27 / 52$

Ans: C

Here, $n(S)=52$.
There are 26 red cards (including 2 kings) and there are
2 more kings.
Let $E=$ event of getting a red card or a king.
Then, $\quad n(E)=28$.

$$
\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{28}{52}=\frac{7}{13} .
$$

7. Three unbiased coins are tossed. What is the probability of getting at most two heads?
a. $3 / 4$
b. $1 / 4$
c. $3 / 8$
d. $7 / 8$

Ans: D

Here $S=\{$ TTT, TTH, THT, HTT, THH, HTH, HHT, HHH $\}$.
Let $E=$ event of getting at most two heads.
Then, $E=\{$ TTT, TTH, THT, HTT, THH, HTH, HHT $\}$.
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}$.
8. Two cards are drawn from a pack of 52 cards. The probability that one is a spade and one is a heart, is
a. 3/20
b. $29 / 34$
c. $47 / 100$
d. 13/102

Ans: D

Let S be the sample space.
Then, $n(S)={ }^{52} C_{2}=\frac{(52 \times 51)}{(2 \times 1)}=1326$.
Let $E=$ event of getting 1 spade and 1 heart.
$\therefore \quad n(E)=$ number of ways of choosing 1 spade out of
13 and 1 heart out of 13
$=\left({ }^{13} C_{1} \times{ }^{13} C_{1}\right)=(13 \times 13)=169$.
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{169}{1326}=\frac{13}{102}$.
9. An urn contains 6 red, 4 blue, 2 green and 3 yellow marbles. If two marbles are picked up at random, what is the probability that either both are green or both are yellow?
a. 5/91
b. $1 / 35$
c. $1 / 3$
d. $4 / 105$

Ans: D
. Total number of marbles $=(6+4+2+3)=15$.
Let E be the event of drawing 2 marbles such that either both are green or both are yellow.
Then, $n(E)=\left({ }^{2} C_{1}+{ }^{3} C_{2}\right)=\left(1+{ }^{3} C_{1}\right)=(1+3)=4$. And, $n(S)={ }^{15} C_{2}=\frac{15 \times 14}{2 \times 1}=105$.
$\therefore \quad \mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{4}{105}$.
10. In a simultaneous throw of two dice, what is the probability of getting a total of 7 ?
a. 1/6
b. 1/4
c. 2/3
d. 3/4

Ans: A
We know that in a simultaneous throw of two dice, n (S) $=6 \times 6=36$.
Let $E=$ event of getting a total of 7
$=\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\}$.
$\therefore \quad P(E)=\frac{n(E)}{n(S)}=\frac{6}{36}=\frac{1}{6}$.

